skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Teng TENG, Yefan ZHI"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this research, we propose a Multi-Filament Fused Deposit Modelling (MFFMD) printer and a respective generator that can be used to produce structural parts with locally tailored functional properties. 3D-printed structural components can highly benefit from multi-material printing with tuneable functional properties. Currently, multi-material printing is mainly achieved using multiple separate nozzles, leading to discontinuous flow in switching materials. This limitation results in material interface delamination, minimal control in the continuous transition of material properties, and longer production time.To address this, we first design and build an MFFMD printer with a single customized nozzle allowing seamless switching between multiple filaments. We then develop a method that generates a continuous toolpath of a given geometry and differentiates materials based on various stress conditions at particular regions. To illustrate, we fabricate a Pratt truss as an example of a tension-compression structure as a case study. In one go, the MFFMD printer deposits resistant filament, respectively, at tension- or compression-concentrated regions based on local stress conditions. Comparative load tests are conducted to validate the performance enhancement of multi-filament prints against single-filament prints. Our proposed method is a prototypical study conducted on a small scale. While it mainly uses thermal plastic filaments, it can be expanded to other construction materials and scales in the future. 
    more » « less